
J .  Fluid Mech. (1974), vol. 65, part 4, p p .  781-797 

Printed in Great Britain 
781 

Kelvin-Helmholtz instability of a slowly varying flow 
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The linear stability of a basic flow of two homogeneous inviscid incompressible 
fluids under the action of gravity is treated mathematically. In  the basic state, 
one fluid is a t  rest below a horizontal plane z = 0; and the other flows above in the 
x direction, its speed varying slowly with the lateral co-ordinate y. The eigen- 
value problem for normal modes is derived; its equation is a partial differential 
one, the co-ordinates y and x not being separable. The problem is solved approxi- 
mately by taking the modes ZocuEly as if the basic velocity were independent of y, 
though the lateral wavenumber is allowed to vary slowly with y. This leads to 
an ordinary differential equation in y which is solved by the JWKB method. 
Detailed calculations are made for a parabolic profile, representing the blowing 
of air over water in a wide channel, and for other profiles. 

“There is nothing Nature loves so well as to change existing forms 
and to make new ones like them.” Marcus Aurelius, Meditations I V 

1. Introduction 
The problem to be posed and treated below is a model of instability when air 

is blown over water in a wide long channel. More generally it may be regarded as 
a prototype of Kelvin-Helmholtz instability of flows which vary slowly. Such 
problems are important in many applications, because it is rare in practice that 
a flow both is steady and depends upon only one space co-ordinate. We shall 
treat the hydrodynamic instability of inviscid incompressible homogeneous 
fluids bounded by rigid side walls a t  y = YJs and Y2/e, the basic horizontal velo- 
city and density being given by 

po(l -6) for x > 0, 
P = {  po(l +6) for x < 0, 

respectively, where z is the height, Yl and Yz are fixed lengths and e is a small 
positive dimensionless parameter. The gravitational acceleration will be denoted 
by - gk, and po and S taken as positive parameters with S < I. 

Motivated by various problems of geophysical fluid dynamics, Blumen 
(1971, 1973, 1974) has considered various general and particular characteristics 
of similar three-dimensional hydrodynamic instability. Barcilon & Drazin 
(19721 applied a similar model to the formation of a dust devil. These papers 

t Permanent address: School of Mathematics, University of Bristol, England. 
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treated three-dimensional Kelvin-Helmholtz instability without slow varia- 
tion of the basic flow. Longuet-Higgins & Stewart (1961) considered slow varia- 
tion without instability, treating the propagation of short waves on an ocean 
with basic shear. Here we shall treat the above problem of three-dimensional 
Kelviii-Helmholtz instability with slow variation by a method applied by Dra- 
zin (1974) to a model problem. Gent (1974) has also applied the method to  prob- 
lems of baroclinic instability. A somewhat similar method has been applied by 
Bcluthier (1972,1973) to the stability of a boundary layer on a plate. 

The general eigenvalue problem for the stability of the basic st.ate (1) is 
posed in $2 ,  The approximation of slow lateral variation is introduced in $3,  
and found to lead to a JWKB eigenvalue problem. This problem is solved fairly 
generally in $4. Detailed stability characteristics are found in $5 for a symmetric 
parabolic velocity profile. A piecewise-constant velocity profile is used in $ 6  to 
elucidate unstable modes. Finally, stability characteristics of a linear profile 
are found in $ 7. 

2. The general problem 
The equations of motion and incompressibility apply on each side of the 

disturbed interface, say z = 1;(x, y, t ) ,  between the two fluids. We express the 
total velocity U + u' and the total pressure p, - gpz +p' each as the sum of the 
basic quantity and its small perturbation, and then linearize the equations in the 
usual way by neglecting products of 1; and the other small quantities u' and p'. 
By the method of normal modes we also suppose that u', p ' ,  1;cc exp { ik (x  - ct)] 
for a given wavenumber k, and seek eigenvalues c for each basic flow and thence 
the stability characteristics of that flow. Then the equations become 

ik(U-c)u'+ikp'/p = -U$, ( 2 )  

(3) 

(4) 

( 5 )  

ik( U - c) v' +pJp = 0, 

ik( u - c) w' +p;/p = 0, 

iku' + v; + w; = 0. 

It is now possible to differentiate these equations and eliminate all the dependent 
variables but v' to find that v' satisfies the Rayleigh stability equation. 

So far we have merely summarized what is given in any standard treatment 
of instability of parallel flow (cf. Drazin & Howard 1966, $2.1). However, here 
we must take account of the two layers of fluid and exploit the slowness of the 
variation of U with y. Accordingly, we define the 'slow' variable by Y = ey, and 
eliminate all the variables but w' from (2)-(5).  This can be done quite simply to 
give the equation of motion for each fluid (with U = 0 in the lower fluid) : 

(u-c)(w;y+w;,-k~w') = €2 (;?c -- UY,)W' 

Linearization of the kinematic boundary condition at the interface z = 6 be- 
tween the fluids of different densities gives 

(7 )  [w'/( U - c)] = 0 at z = 0, 
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the square brackets denoting the difference between their contents on the two 
sides of the horizontal plane z = 0. Continuity of the pressure at  the interface 
leads to the condition 

2eg uyw; -2sUyv'+- - 
k2 (U-C)2 

g WCu - k2W' 
p (V-c)wL+- [ {  k2 u-c 

= 0 a t  z = 0,  (8) 
e2g ( u - c )  UY, - wf +k2 (U-C)3 

after some differentiation and partial elimination. The condition that the normal 
velocity vanishes at the side walls leads to the conditions 

w; = -- suy w' a t  Y = Y,,Y,. u-c 
Finally, we require that 

wf is bounded as z + & 00. 

(9) 

Equation (6), boundary conditions (7)-( 10) and the x component of the vor- 
ticity equation (which enables one to eliminate d from condition (8)) constitute 
the eigenvalue problem of finding the stability characteristics for general values 
of 8. 

Before solving the problem for small e, we shall make two general remarks. 
First, we may take k 2 0 without loss of generality because there is symmetry 
between k and - k (cf. Drazin & Howard 1966, p. 9) .  Second, generalization of 
Howard's (1961) semicircle theorem for this problem shows (Blumen 1974) 
that if there is instability then the eigenvalue c = cr + ici lies in the semicircle 

{cr- B(um,x + u&)>2 + c l  6 {+(%ax- umin)12, ~6 > 0, (11) 

in the complex c plane provided that 8 is neglected, though g8 need not be. In  
fact this result is also valid for constant U when 6 is not negligible [see equation 
(16)J and may be so for variable U .  The result proves helpful in computing com- 
plex values of c.  

3. The problem with slow variation 
When e is small we may use the local approximation that a t  each value of Y 

the form of a normal mode is as if the basic flow were independent of Y although 
the local wavenumber 1 in they direction may vary with Y .  This approximation, 
the heart of the method of this paper, is justified a t  length by Bouthier (1972) 
and by Drazin (1974), who acknowledge others who developed the method for 
slowly varying waves. This leads here to an asymptotic solution of the form 

as E + 0. This form will lead to a normal mode approximately satisfying the 
equations of motion and boundary conditions in z for each value of Y .  However, 
the perturbation f must 'fit' between the side walls with a definite number of 
zeros, much as the wave function of a bound state does in quantum mechanics. 
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This is effected by the slow variation of the y wavelength as in the JWKB 
approximation. I n  other words, the solution will be found to approximate a 
local solution a t  each value of Y ,  but the wavelength will vary slowly with 
Y and the complex velocity c will be determined globally. To see how these 
results are found, note that, to zeroth order in E )  equation (6) and conditions 
( 7 )  and (10) give 

fuu+lY= 0 (13) 

and W+ = (U-c)exp{-(k2+Z2)*z}, W .  = -cexp{(k2+Z2)*~}, (14) 

where Re (k2+ Z2)* b 0 and Z2( Y ,  c) may be a complex function. 
I n  the conventional problem of Kelvin-Helmholtz instability that would arise 

if U were independent of Y ,  one would take 1 as a given wavenumber in the y 
direct,ion and use the dynamic condition (8) to find the eigenvalue c for given real 
parameters k and 1. However, here we satisfy condition (8) as E --f 0 in order 
to find the function 12( Y ,  c )  and thereafter find the constant complex eigenvalue 
c by solving (13) with the side-wall conditions (9). 

First, as E -+ 0, condition (8) gives us 

12( Y ,  C) = (k2/g6)2 ({c - &( 1 - 6) U}'+ a( I - 6') U2)2 - k2 (15) 

or c = +( 1 - 6) u 5 {g6(k2+ 12)*/k2- *( 1 - 6 2 )  U2}*. 

Equation (16) would be Kelvin's eigenvalue relation if U were independent of 
Y ,  but here we use (15) to determine l 2  as afunction of Y and c, although the eigen- 
value c has yet to be determined. 

To determine c we need (13) and the side-wall conditions (9) as E + 0. These 
give 

f y y + E - 2 1 2 f =  0) 

f y  = 0 a t  Y = Y,,, Yz. (18) 

Now the eigenvalue problem ( 1 7 ) ,  (18) and (15) involves an ordinary differential 
equation and is suitable to be solved by the JWKB method as E +- 0. 

Note that the assumption of the form (12) has enabled us to satisfy all the 
equations and boundary conditions to the first approximation for small E .  

Thus, the next approximation would lead to terms of order 6-l on the right- 
hand side of (17) and of order E on the right-hand side of (18). Therefore it is 
consistent to use only the first JWKB approximation, called the semi-classical 
approximation by some physicists. 

It is convenient to change to dimensionless variables here. So choose D as some 
positive length scale and V as a velocity scale of the basic velocity profile. Then 
we may use V and D to scale all dimensional variables and parameters in the 
usual way to derive a dimensionless problem. I n  this way the form of (17 )  and 
(18) is unchanged, but (15) gives 

12 = k 2 P ( { c - & ( l - S )  U)2+~(1-62)U2)2-k2, (19) 

F = (kV2/g6D)*. (20) 

where the positive Froude number F of the modes of wavenumber k is defined 
by 
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Now (16) may be used to give the local criterion of stability (ci 6 0 )  of a mode 
of given wavenumber k as 

(21) 

for each value of Y. To the crudest approximation, one might anticipate that if 
this criterion were satisfied everywhere the flow would be stable, and if it were 
violated somewhere the flow would be unstable. This must apply to short waves 
which are essentially dependent only upon behaviour of the flow in a small 
neighbourhood, but it so happens that the basic flow (1) is most unstable to long 
waves. Our analysis confirms the anticipated local criterion in part, but reveals 
more complications. Certainly, the primary effect of the variation of U with Y 
is the local one of varying the velocity difference of the two fluids a t  their inter- 
face, but the lateral wavenumber 1 varies between the side walls as a consequence 
of the variable velocity difference. We shall find Kelvin-Helmholtz instability 
in a vertical plane with no possibility of inflexional instability due to the slow 
variation of the basic velocity in a horizontal plane, but local ideas alone are 
inadequate to interpret the detailed stability characteristics. 

U 2  < 4/( 1 - a2) P2 

4. The JWKB problem 
The system (17)-(19) is an unusual JWKB eigenvalue problem in the sense 

that the eigenvalue c is not simply a factor of 12.  It seems easiest to solve this 
problem by inverting it so that we find the lateral wavenumber in terms of c 
rather than vice versa. So we shall assume that c has a given value, or a t  any rate 
lies in some given region of the complex plane, and finally check the consistency 
of the assumption. The logical basis of this argument is the construction of a 
complete approximate solution so that, c is known for all wavenumbers. 

4.1. Xtability 
First suppose that the mode is globally stable. Therefore, c is real and (19) gives 
real Z2. Then (17) and (18) are a classical real JWKB problem, whose solution 
depends crucially upon the nature of the zeros of 12( Y, c )  along the real- Y axis 
between Yl and Y2 (cf. Jeffreys 1962, $3.6).  

(i) If 12 > 0 in the interval (Yl, 5)) then the eigenfunction is given by 

and the eigenvalue relation by 

c-11 Z ~ Y  m,n as m -+ co, (23) 
Y1 

where the positive integer m is the number of modes of the solution ( 2 2 )  be- 
tween the side walls a t  Y = Yl, Y2, and we take Re 1 > 0. The JWKB approxima- 
tion is properly valid only for large values of m, but when U(Y) is a smooth 
function, one may expect fair quantitative agreement for values of m that 
are not large (cf. Drazin 1974). We may regard the average wavenumber 
mns/(Y2 - Yl) as fixed while E -+ 0 or m -+ 00. 

5c F L M  65 
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If U were constant, relation (23) would always arise, even if c were complex, 
and give the classical eigenvalues (16) on identification of mme/(Y, - Y,) with 1. 
However, here U varies with Y ,  so relation (23) does not give c explicitly in terms 
of the wavenumbers k and m, but rather gives nz. in terms of c and the other 
parameters. It is for this reason we have sought t o  solve the inverse problem. 

In  fact 1, > 0 for real c if and only if either F-, < $( 1 - 6,) U 2  or 

1 c-&(1-6) UI > { F - , - $ ( ~ - c ? ~ )  U2).: 

at a given value of Y ,  i.e. either the mode is locally unstable or it is locally stable 
and its speed is greater than that of an internal gravity wave relative t o  the mean 
flow. I n  this case, with 12 > 0 throughout the interval (Y,,Y,) of flow, it can be 
seen that the stability characteristics are not dissimilar from those with constant 
U ,  the eigenvalue c being in some sense a Y average of the eigenvalues for local 
velocity differences U( Y ) .  

(ii) If Z2 has one simple zero Y’, such that 

Z2( Y )  > 0 for Y, < Y < Y’, Z2( Y )  < 0 for Y’ < Y < Y,, (24) 

say, then the JWKB method can be readily shown (cf. Jeffreys 1962, $3.6) to 
give the eigenfunction 

and the eigenvalue relation 

Although we have included the phase $ 7 ~  to facilitate reference to texts on the 
JWKB method, our method is not so accurate, as discussed in $3.  So, more 
properly, we shall use the relation 

G - I ~ ~ ’ Z ~ Y  - mm as m-tco. (26) 
Yl 

(iii) If Z2 has two simple zeros Y’ and Y” such that 

Z 2 (  Y )  < 0 for Yl 6 Y < Y’, Y” < Y < Y2; Z2(Y) > 0 for Y’ < Y < Y”, 
(27) 

then (cf. Jeffreys 1962, $3.61) the eigenfunction is 

f- for Y’ < Y < Y”, 
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and the eigenvalue relation 

(iv) If Z2 has two simple zeros Y' and Y" such that 
P(Y) > 0 for Y, < Y < Y', Y" < Y Q Y2; P(Y) < 0 for Y' < Y < Y" 

then either the eigenfunction is 

f 

for Y, Q Y < Y', 

for Y' < Y < Y", 

42-4 exp ( - e-lS,r: I d ~ )  cos (e-11: z d ~ )  
for Y" < Y < Y2, 

cos (e-lJpqildY +in) 
with the eigenvalue relation 

through integral values, or the eigenfunction and relation have similar forms 
with the roles of Y, and Y2 reversed. 

Note that approximation (31)  breaks down when 

cos(E-'SYzldY Y" +an 1 = 0, 

and so, in particular, when I is an even function of Y and Y, = -Y2. Also, the 
present subcase (iv) is more complicated than the previous ones, the two inter- 
vals of flow where l2  > 0 being essentially isolated from one another by the 
interval where l2  < 0. Although n is an integer in this subcase, it is no longer the 
number m of nodes of the mode between the side walls; nonetheless, it is possible 
t o  order the union of the two sets of eigenfunctions [(31) and the corresponding 
set with (Y,, Y') replaced by (Y,,Y")] by thenumber of zeros of each eigenfunction. 
As one changes from subcase (i) to subcase (v), the number of zeros will change 
continuously. These remarks are amplified in some of the examples in later 
sections. 

(v) Further special cases arise according to the nature of the subintervals of 
(YI, Y,) over which E 2  is either positive or negative. However, their details prolifer- 
ate and few seem likely to occur in practice, so we shall not examine them here. 

In  summary of subcases (i)-(v), we see that real eigenvalues c may be used to  
calculate they wavenumber rnne/(Yz - Y,) for agiven profile U (  Y )  and given values 
of F ,  k, 6 and e. If all positive wavenumbers can be found in this way, we conclude 
that the flow is stable. Otherwise the remaining range of y wavenumbers gives 
instability, although the growth rates of unstable disturbances can be found only 
by use of the JWKB approximation in the complex plane, as in $4.2.  

50-2 
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However, we shall first amplify the remark a t  the end of $ 3  by noting that 
although U( Y )  may equal c for some real value of Y in the interval (Yl,Y2) of 
flow there is no singularity in a critical layer like that of the Rayleigh stability 
equation. This is because instability due to inflexion points in the x, y plane 
is not being considered to the present order of approximation for small E .  Kelvin- 
Helmholtz instability in the x ,  x plane is being perturbed, and the critical layer 
in that plane occurs always a t  the interface between the two fluids. 

Finally, note that  in each subcase the stable disturbances are exponentially 
small in those regions of space where the local wavenumber 1 is imaginary and 
oscillate sinusoidally where 1 is real. 

4.2. Instability 
Although the criterion for stability can be found by considering only stable 
disturbances, we shall examine unstable ones briefly. For a mode that is generally 
unstable, c is expected to lie within the semicircle (11). The JWKB problem 
(17)-( 19) is now complex, and not covered well in the literature. However, Head- 
ing (1962, § 5.4) and Froman & Froman (1965, chap. 7 )  have treated the complex 
problem briefly. 

It may help to bear in mind the general idea that (17) has two independent 
exact solutions which are integral functions of Y for each value of E ,  however 
small, although the two JWKB approximate solutions [e.g. (SS)] have infinities 
and branch points a t  the transition points in the complex Y plane where l2 
vanishes. Consequently, different linear combinations of the two JWKB solu- 
tions may approximate the same exact solution in different parts of the complex 
plane, this being the Stokes phenomenon. To apply boundary conditions a t  
Y, and Y, we seek the relationships between linear combinations of the approxi- 
mate solutions a t  these points. These relationships can be found if we take the 
integrals fldY that  arise in the exponents of the approximate solutions along 
a contour in the complex Y plane that neither crosses a cut of the function 13 
nor goes near a zero of 1. 

This having been said, one has first to find the zeros of 1 in the complex Y plane, 
then choose cuts and branches of 14 appropriately to define the JWKB approxi- 
mate solutions. This leads to eigenvalue relations similar in form to the ones in 
3 4.1 above, but the contours of integration are along the anti-Stokes lines in 
the complex Y plane (lines along which the integral SldY is real) between the 
appropriate transition points and along lines joining the end-points Yl and Yz to 
infinity. 

5. Parabolic profile 
To represent wind blowing over water in a wide high channel, take 

U = l - Y z  for -1 Q Y <  1. (33) 
The problem (17)-( 19) is then symmetric in Y about Y = 0,  so each eigenfunction 
is either an even or an odd function of Y .  Also criterion (21) gives local stability 
where (1 - Y2)' < 4/F2( 1 - 
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and thus local stability everywhere if 
F 6 2/( 1 - P)*. (34) 

Note that F is proportional to the square root of k, so that short waves are always 
locally unstable in this simple model without surface tension or dissipation. 

( a )  First suppose that the values of K ,  m, P, 6 and e are such that c is real. 
Then the various subcases can be classified, after use of a lot of elementary alge- 
bra, as follows. 

(i) If either Icl 2 F-l(2/(1 +6)}H or if none of the subcases (iii), (iv) and (v) 
arise, then 12( Y )  > 0 over the whole interval ( -  1, 1)  of flow, and eigenvalue 
relation (23) can be shown to give 

(iii) If - F-1 < c < F-1 and c < 1 and either (I) F-I < 
Ic - &( 1 - 6 )  I > (F- 

then Z2( Y )  > 0 over the subinterval ( -  Y' ,  Y ' )  and 12( Y )  
(11) F-l > &( 1 - a2)4 and 

(35) 

+( 1 - P)* or 
2 - & ( l  -62)}4, 

< 0 elsewhere over the 
interval of flow, where the positive zeros of l 2  are defined by 

Y',  Y" = + (1 - c i [{ZF-Z - ( 1  + 6 )  c"/( 1 - 6)]4)* (36) 
respectively. Then eigenvalue relation (29) gives 

1dY - imns as m + co. St' (37) 

(iv) If F-l < c < F 1 { 2 / (  1 + a)}* and B-l > +( 1 - a)}* and 

Ic- g(1- 6)l < {F-Z-$( 1 - 6 2 ) } & ,  

then Z2( Y )  > 0 over the subintervals ( -  1, - Y")  and (Y",  1) and Z2( Y )  < 0 
elsewhere over the interval of flow. Then subcase (iv) gives 

jlnld.Y-imne as m + m  (38) 

Here certain changes in relation (32) have been made on account of the exception 
noted thereafter. In  particular, the n of relation (32) has been doubled to  give 
the correct number m of nodes of the eigenfunctions, which are alternately 
even and odd functions of Y ;  also the eigenfunctions here are exponentially 
small only in the subinterval ( -  Y", Y") .  

(v) If IcI < F-l(2/(1+6)}* and P-l< c < 1 and either (I) F-l < &(l-S2)fr 
o r ( I I ) F - l >  &(l-S2)* and ~ c - - & ( 1 - 6 ) ~  > {F-2-2(1-~3~)}*, then 12(Y) > 0 over 
the subint!ervals ( - 1, - Y") ,  ( - Y' ,  Y) and ( Y", 1) and 12( Y )  < 0 elsewhere over 
the interval of flow. The approximate eigenvalue relation for this subcase can 
be shown to give either 

through integral values. For the former relation the eigenfunction is exponentially 
small except in the subinterval ( -  Y' ,  Y ' ) ,  and for the latter except in the sub- 
intervals ( - 1, - Y )  and ( Y", 1). The number m of nodes changes continuously as 
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FIGURE 1 .  Graphs of c against a: = j rnm/ /c  for U = 1 - Y2, 6 = 0. ---, subcase (i); ..--.., 
subcase (iii) ; - . - a  - , subcase (iv); ---, subcase (v). ( a )  F = 3, unstable. ( b )  F = 2, just stable. 
( c ) F  = 1,stable. 



Kelvin-Helmholtz instability of u slowly varying flow 

0.05 

c 0 

-0.05 

791 

1 I 1 - - --- - ----- ------- - - - 
k.* .. 

------____ - 
~ 1 -----___ 

(b) 

/..* - - *  

................... 
- 

....................... ._ - 
I 

0.05 I I I I I 

....... ....... ..- - 
I ---I_ 
---- 

...................... .... ... ....... ....... -----__ I c o l  -----_ 

(4 --- - -- ------ ---- 
..........*..__ - 

-0.05 I I I I I 
0 1 .o 2.0 3.0 4.0 

a 

0.05 ............. (c) .*- _I__-----7- 1 

c o i -  
a 

FIGURE 2. Graphs of c against a for U = 1 - Y2, 6 = 0.999. ---, subcase (i); ..-.*, subcase 
(iii); (a) F = 60, unstable. ( b )  P = 2/( 1 - S2)* = 44.73, just stable. (c) F = 30, stable. 

this subcase arises from (i). Also the eigenfunction associated with the former 
relation (39) has zeros over (Y" ,  l), because it oscillates over that subinterval 
although the coefficient of the oscillating solution is expenentially small. 

(b )  The unstable modes are difficult to find by the JWKB method because 
12 = 0 has eight zeros in the complex Y plane. So we shall have to rest content with 
the stability criterion and the characteristics of the stable modes already found. 

The pattern of the stable modes is illustrated in figures 1 and 2, which are based 
upon computation of relations (35) and (37) - (  39) for various values of the para- 
meters. First note that when c is large, subcase (i) arises and 

jollci~ = hF2(c2-g(1--8)c+o(i)) as c +  fa. ( 40) 

Accordingly, we have cut off the graphs where formulae ( 3 5 )  and (40) already 
give the velocities of the stable internal gravity waves moderately accurately. 

In  figure 1, c is plotted against the quotient a = $mnc/k of the average lateral 
wavenumber and the longitudinal wavenumber for S = 0 and various values of l? 
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There is local stability everywhere for all lateral wavenumbers if and only if 
F 6 2. In  figure 1 (a), F = 3 and there are two stable modes when +mne/k 2 0.91 
and the flow is unstable if +mnelk < 0.91. I n  figure 1 ( b ) ,  F = 2 and the flow is 
just stable; there are two modes for each pair of real wavenumbers. In  figure 1 ( c ) ,  
F = 1 and the flow is stable; there are two modes for each pair of real wave- 
numbers, but the values of c between - + ( 4 3  - 1) and 1 do not occur. 

We take 6 = 0.999 in figure 2 to simulate air blowing over water. In  figure 
2 ( a ) ,  F = 60 and the flow is unstable; in figure 2(b), F = 2/(l-S2)3 = 44.73 
and the flow is just stable; in figure 2(c), P = 30 and the flow is stable. 

6. Broken-line profile of channel flow 
The characteristics of unstable modes are easier to find when an explicit 

exact eigenvalue relation is known, as it is for piecewise h e a r  profiles. So to 
explore instabilities, we shall represent flow in a channel by the profile 

Therefore 

} (42) 
i = k2 F4c4 - 1) for Q < IYI 6 1, l&{; - ( = k 2 F 4 ( [ ~ - 9 ( i - S ) ] 2 + , ( i - 6 2 ) } 2 - k 2  for IYI < 8, 

and (1 7) has piecewise sinusoidal solutions. The continuous solution satisfying 
boundary conditions (18) leads t o  the eigenvalue relation 

loTo+ZITl = 0 (43) 

ll-loToT1 = 0 (44) 

(45) 

for an even eigenfunction f, and to 

for an odd one, where we use the definitions 

To = tan 4 e-1 I,, Tl = tan 5 c 1 l 1 .  

(a,i) If either c > F-l, or c < -P-1 and either (I) F-l < &(I -S2)* or (11) 
Ic-+(l -6)I > {F-z-$(l -62))J, then I:, 1: > 0 and relations (43) and (44) give 
eigenvalues which interlace. The relations can be combined to give 

Ql,+$l,  - m m  as m-tco, (46) 

consistent with the JWKB approximation (23). 
(iii) If -P-l < c < F-1 and either 

(I) 3 - 1  < +(i-P)+ or (11) ]c-+(1-8)1 > {F-z--$(i--Sz)}*, 

then I: < 0,l: > 0 and eigenvalue relations (43) and (44) give 

#e-lll - mn- as m + a .  (47) 

(iv) Ifeither(1)c > P-lor(II)c < - F-land)c-+(i-S)] > (F-2-~(l-S2)}4,  
then I ;  > 0, i: < 0 and relations (43) and (44) give 

+s-ll0 - mn- as m+m.  (48) 
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FIGURE 3. Graphs of c against 61 for broken-line profile (41). ---, subcase (i); *..**., subcase 
(iii); -, Imc, given by formula (49). (a )  6 = 0, P = 3. ( b )  6 = 0.999, P = 60. 

(b )  When the eigenvalue cis complex, one would expect 1; and 1$ to be complex 
in general. However, it is easy to show that relations (43) and (44) cannot be 
satisfied when both Im ( l o ) / €  and I m  (Z,)/e are large. It can further be shown that 
in fact the JWKB approximations above for real 1; and 1; yield the complex as 
well as the real eigenvalues c. The complex roots c bifurcate at a critical value of e 
for each given pair of values of k and m, there being a complex conjugate pair of 
values of c for e less than, coincident real roots for e equal to and a real pair for B 

greater than this value. Case (a,  iii) above gives bifurcation where 

and the eigenvalue 
a = +mm/l% = a, = ${&F*( 1 - 82)2 - I}+, 

c = +( 1 - 6) 2 F-l{( 1 + 9m2n2s2/16k2)3 - $F2( 1 - S2))*. (49) 
Eigenvalue relations are plotted in figure 3. The stable eigenvalues have similar 

properties to those for the parabolic profile (33) depicted in figures 1 and 2, so 
we have taken only the cases 6 = 0 with F = 3 and S = 0-999 with F = 60 in 
figures 3 (a)  and (b ) ,  respectively. For the former case, stable modes are given by 
relations (46) and (47) for c > F-l = $, cc = ($)*, and by relation (49) for a < ($)*. 
This gives bifurcation a t  a = a, = 2*, and instability for a < 2*. For the latter 
case, stable modes are given by relations (46) and (47) and bifurcation occurs a t  
c = a( 1 - 6) = 0.0005, a = a, = 1.0. 
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7. Linear flow 
For the last example, take 

U = Y  for - l < Y < l .  (50) 
Then the problem (17)-( 19) is symmetric up- and downstream, so that if 

c = c, + i C i  

is an eigenvalue with eigenfunction f( Y )  for given values of k, m, F, 6 and 8 then 
so is - c* = - c, + ici with f *( - Y )  for the same values. Accordingly, we shall 
suppose that c, 2 0 without loss of generality. Also the criterion (21) gives local 
stability everywhere if and only if F < 2 / (  1 - S2)&. We shall now proceed in a 
similar manner to that of 3 5 .  

(a,i) If either (I) c > {2/(1 +S)}&F-1, or (11) c < (2/(1+8))*F-l and 
F < 2 / (  I - S2)-h and c < I $( 1 - 6) - {F-2 - $( 1 - ?l2))61 or (111) c < (2/( 1 + 6)}* F-l 
a n d F <  2/(1-82)+andc> 1andc>+(1-6)+(F-2-$(1-62)}~,thenZ2(Y) > 0 
over the interval ( - 1, 1) and the eigenvalue relation gives 

ZdY N m m  as m-too. (51) s1, 
(ii) If c < {a / (  1 + 6))BP-1 and F < 2 / (  1 - P)+ and 

I &(  1 - 8)  - { F - 2  - $( 1 - 62)}41 < c < $( 1 - 6) + (F-2 - $( 1 - P)}i, 
then 12 > 0 over the subinterval ( - 1, Y’) and Z 2  < 0 elsewhere over the interval of 
flow, where Y’ and Y“ are defined by 

Y’, Y” = c 3 [ { 2 P  - (1  + 6 )  c”/(  1 - S)]S (52) 
respectively. The eigeiivalue relation then gives 

ZdY-mm as m-tco. 1:: (53) 

(iv) If G < { 2 / (  1 + 6))t F-l and either F > 2/( 1 - P)* or 
$ ( 1 - 6 ) + { F - 2 - ~ ( I - S 2 ) } ~  < c < 1, 

then Z2 > 0 over the subintervals ( - 1, Y’) and ( Y”, 1) and Z 2  < 0 elsewhere over the 
interval of flow. It follows that eit’her 

J -1 J Y  
(54) 

The pattern of the stable modes is illustrated in figures 4 and 5, which are 
based upon computations of relations (51)-(54). Note that 

$vme/k N P2c2 as c +  +CO, e + 0, 

and that the local criterion of stability (21) is inadequate for this profile when 
s =  0. 

8. Conclusions 
We have considered in detail the Kelvin-Helmholtz instability of some slowly 

varying flows, instability tha t  has important applications in oceanography and 
meteorology. However, the ideas and techniques may be used more widely for 



1 .o 

c 0.5 

1 .O 

C 

I I 1 
(0) 

- ).+,&.-. ------ - d 
/.-.-. 

,*//* 

I /  I I 

l 

0 1 *o 2.0 3.0 4.0 

a 

795 

0 1 .o 2.0 3.0 4.0 

a 

FIGURE 4. Graphs of c against a for U = Y ,  S = 0. ---, subcase (i); ***-*.,  subcase (iii); 
-.-.- , subcase (iv). (a )  P = 3, unstable. ( b )  P = 2), just stable. (c) F = 1 ,  stable. 

instability of other slowly varying flows, so our conclusions should be interpreted 
accordingly. 

The chief conclusion has been t o  substantiate in part the intuition that if the 
local criterion (21) for stability is satisfied everywhere in the domain of flow, then 
the given modes will be stable, but if it is violated anywhere they will be unstable. 
However, the intuition was found false for the linear profile of 3 7.  

Any given linear mode has the same relative growth rate kc a t  each point, 
whether it is stable or unstable, but its spatial structure is more complicated. 
A stable mode may be exponentially small in certain regions, where its local 
lateral wavenumber 1 is pure imaginary, but oscillate sinusoidally elsewhere. 
This affords a mechanism for enhanced response of a stable wave forced by a 
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FIGURE 5 .  Graphs of c against a for U = Y ,  6 = 0.999. ---, subcase (i); -.-.-, subcase (iv). 
(a )  B’ = 60, unstable. ( b )  F = 44.73, just stable. (c) F = 30, stable. 

source in a region where the wavenumber is imaginary. An unstable mode 
may be exponentially damped, oscillate sinusoidally or have a damped oscilla- 
tion as y varies, according to whether the lateral wavenumber is locally pure 
imaginary, real or complex respectively. 

It may be helpful to  regard the lateral wavenumber of an unstable mode as 
real where the mode is locally stable and complex elsewhere, so that the unstable 
mode is exponentially small where t h e  flow is locally stable and sinusoidal else- 
where. This is an accurate description of the instabilities of the broken-line profile 
of 3 6, but in general is an over-simplified view. However, it gives one intuition 
into the generation of waves on a calm lake by a gust of wind: the lake surface is 
ruffled in a patch where the wind is strong enough to cause local instability with 
modes varying sinusoidally in space, and the lake surface seems calm elsewhere, 
where the modes decay exponentially in space. (Of course, the linear model 
here with a steady basic wind independent of height is not strictly applicable to 
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the effects of a gust of wind on a lake, but the essence of the intuition is.) This 
gives a picture of an unstable mode at each instant as exponentially small where 
the wind is weak and sinusoidal where the wind is strong, the picture of a wave 
function of a bound particle in a potential well. In  addition, the unstable mode 
everywhere grows exponentially in time until nonlinear effects occur. 

The mechanism of instability is the one discovered by Kelvin, but the strength 
of the mechanism varies with the lateral co-ordinate y. 

The detailed stability characteristics for parabolic, piecewise constant and 
linear profiles across the channel are given in $0 5-7. These make a quantitative 
comparison of experiments and theory of Kelvin-Helmholtz instability a step 
nearer. A channel in the laboratory necessarily has a finite width, which is ignored 
in the classical theory of Kelvin. However, we have ignored viscosity and use an 
over-simplified vertical dependence of the basic velocity. 

We have chosen the basic flow (1) both for its geophysical applications and for 
its relative simplicity. It is not difficult to allow for a slowly varying velocity in 
the lower fluid and for interfacial surface tension; this leads to problems of the 
same form but with greater algebraic complications in the relationship of 1 to c. 
One may hope similarly to allow the basic flow to vary slowly with x instead of y.  
The more challenging problem in which the basic flow varies slowly with both x 
and y would seem to demand the method of ray theory or some other appropriate 
generalization of the JWKB method. 
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